

5Th Semester(COMPUTER SCIENCE AND
ENGG .GCEKJR)

Formal Languages and Automata Theory.

Introduction -:Automata theory is a study of abstract machine , automat and a

theoretical way solve computational problem using this abstract machine .It is

the theoretical computer science .The word automata plural of automaton comes

from Greek word ...which means “self making”.

This automaton consists of states (represented in the figure by circles) and

transitions (represented by arrows). As the automaton sees a symbol of input, it

makes a transition (or jump) to another state, according to its transition function

, which takes the current state and the recent symbol as its inputs.

Automata theory is closely related to formal language theory. A formal

language consist of word whose latter are taken from an alphabet and are well

formed according to specific set of rule . so we can say An automaton is a finite

representation of a formal language that may be an infinite set.

 Automata are often classified by the class of formal languages they can

recognize, typically illustrated by the CHOMSKY HIERARCHY which

describes the relations between various languages and kinds of formalized

logics.

 Following are the few automata over formal language.

Automaton Recognizable Language.

Nondetermistic /Deterministic Finate

state Machine(FSM)

Regular language.

Deterministic push down

automaton(DPDA)

Deterministic context free language.

Pushdown automaton(PDA) Context_free language.

Linear bounded automata(LBA) Context _sensitive language.

Turing machine Recursively enumerable language.

Why Study of automata theory is important?

Because Automata play a major role in theory of computation, compiler

construction, artificial intelligence , parsing and formal verification.

Alphabets, Strings and Languages; Automata and Grammars-:

Symbols and Alphabet:

Symbol-: is an abstract user defined entity for example if we say pi(π) its value

is 1.414..

A simple example could be -: letter , digits.

Where as

An Alphabet -: is a finite , nonempty set of symbols denoted by ∑ in theory of

computation.

Example1-:∑={0,1}

Example2-:∑={a,b,c....z}

String and Languages-:

String-: Finite sequence of symbols (Symbols could be chosen from alphabet)

and denoted by symbol w (depends on writer)

Example-: ∑={0,1}

Then 0101001 , 010, 00, 11, 111 ,0, 0011,..... etc are the string we can from

by sequence of symbols.

Then a,b,ab,aa,bb,aab,abb,....etc are the string we can write by sequence of

symbol.

Empty String-:Symbol ‘ε’ Greek small letter epsilon is used to denote

empty string and that is the string consisting of zero symbol. It is also called as

null string .

Length of string-: is the total no of symbol present in the string .

Example1 -: ∑={0,1}

w=01010

Then length of string is denoted by |w| and here it is 5 so we can write

|w|=5

Example2-: w =ε then the length of w is given by

|w|=0

Prefix-: prefix of a string is any number of leading symbol of string.

Example-: let w=abc

Prefix of w are ε,a,ab,abc.

Suffix-: is the any number of trailing symbol of string.

Example w=abc

The suffix are ε,c,bc,abc

Substring-:Any sequence of symbol over the given string.

Example-: w=abc

The substring of w are ε,a,b,c,bc,ab,abc.

Power of an alphabet-The string that can be formed by taking number of

symbol from given alphabet ∑ , no of symbol we can take will be given by the

power.

Example-: ∑={0,1}

Then ∑0={ε}

∑1={0,1}

∑2={00,01,10,11}

∑3={000,001,011,....,111}

∑*=∑0 ᴗ ∑1 ᴗ ∑2 ᴗ ∑3.........

So ∑*={ε,0,1,00,01,11,10,000,001.....}

∑+= All the string except non-empty string

So

∑+= ∑1 ᴗ ∑2 ᴗ ∑3.........

And then

∑+={0,1,00,01,11,10,000,001.....}

Concatenation of String-:

if w and x are two string then the concatenation of two string is denoted by wx.

Example-: w=1110 and x=0101

Then xy=11100101

Language-:It is the set of string over the alphabet ∑ which follows a set of

rules called the grammar.L

Or otherwise we can say set of string generated by grammar taking symbol

from ∑ .

Example 1-:All string start with 11 from ∑={0,1}

L={110,111,1100,1111,1101,1110,........}

Example 2-:set of binary number whose value is prime.

L={10,11,101,111,1011,......}

Note-: L={ϕ} is called empty language.

And L={ε} Language consisting of only the empty string.

Natural Language-: the language we use as medium of communication.

Formal Lanugage-: collection of string where format (given by grammar)is

important and meaning is not important.

Language of machine -:Set of all accepted string of the machine

Grammar-: A set of rules used to generate the string for a particular

language.

Question and Answers

Q1. Define Theory of computation-:

Ans-:Mathematical representation of computing machine and its
capabilities.

Q2.Automata is a recognizing device or generating device?

Ans-: Recognizing device.
Q3. Grammar is a recognizing device of generating device?

Ans-: Generating .

Q4. Difference between language and grammar
Ans-: please follow the above notes.

Q5.Difference between natural language and formal language?

string governed by grammar and meaning is not important
.Recognized by Machine .

Q6.Find the number of prefix , suffix, and substring for a given string

of length n.
Ans-: Number of prefix=n+1

Number of suffix=n+1

Number of substring =(n(n+1))/2 + 1.

Short answer type question.

Q1. What do you mean by power of alphabet.

Q2. Define formal language explain with example.

Deterministic finite Automata (DFA)

INTRODUCTION-:

Finite state machine (FSM) or Finite Automaton-: is a mathematical model of a

machine ,which can only reach to finite number of states by transition after

reading one symbol at a time .Finite automata are computing device that accept

or recognize regular language (A formal language follows rules).It is used to

model operation of many system encountered in practices.

Definition of finite automata-: A finite automata can be defined by a 5 tuple

machine.

Machine M= (Q,∑, δ,q0,F)

Where

Q is the finite set of states.

∑ is the set of input symbol / alphabet.

δis the mapping function which maps Q × ∑ Q

q0is the initial state which must be element of ∑

F Set of final states must be subset of Q

Transition system-:Is a directed labelled graph in which each vertex or node

represent a state and directed edges represent the transition of a state and each

edge labelled with input. A special kind state called final state are represented

by double concentric circle and all other state are called non final state. One of

the non final state is considered as starting state.

Example-:

M=({s1,s2} , {0,1} , δ , s1 , {s2})

Transition function δ defined as follows

δ(s1,0)={ s2}

δ(s2,0)={ s1}

it can also be represented by transition table. Note in the transition table arrow

mark is used to indicate starting state and * symbol is used to indicate final state

and each row indicate the transition of state by reading particular symbol which

is given by transition function. As shown below.

 States ↓ / input→ 0 1

s1

s2 ϕ

*s2 ϕ s1

 Example 2-: Give the 5 tuple representation and draw the transition table for

the following fig.

DFA

Finite automata is devided in to two categories.

1DFA (Deterministic Finite Automata.

2NFA (Non Deterministic finite Automata.

Formal Definition-: DFA-:Formally defined using 5 tuple notation with

following restriction

Each and every state for every input symbol , there should be exactly one

transition.

DFA is the special case of NFA but the reverse is not true.

Simplified notation.

Machine M= (Q,∑, δ,q0,F)

Where

Q is the finite set of states.

∑ is the set of input symbol / alphabet.

δis the mapping function which maps Q × ∑ Q

q0is the initial state which must be element of ∑

F Set of final states must be subset of Q

 Design of DFA-: In order to design the DFA first of all we need to understand

the language(Set of string) accepted by DFA.

Language accepted by DFA can be of the following type

1. Starting point restriction.

Ex-:All string start with ‘01’

2. End point restriction .

Ex-:All string end with ‘01’

3. Sub string restriction

Ex-:All string where 101 is the substring.

4. Other

 Ex-: String divisible by 4.

The second step towards solution is to identify the minimum length string

that is accepted by language and accordingly identify the minimum state

required and draw the diagram . the diagram will indicate initial and final

state.

 The third step is ,for each state , decide the transition to be made for each

symbol as input.

If transition is not valid then insert a new state called dead state or trap

state and transit to this state.

Example-:Design a DFA which accepts the language of all string start

with 01 over input symbol {0,1}

Sol-:

Step1-:First step is to identify the language and that is

 L={01,011,010,0100,0110,0111,0101,01111....}

It is easily observable that all string in the language start with ‘ 01’

Sept-2

It is also clear from the above statement that minimum string accepted by the

DFA is ‘01’ the length of the string is 2

Note-: if minimum length of string with starting point restriction is ‘n’

Then we need n+2 number of state including trap state.

Since length of minimum string length is 2 we can conclude that minimum

no of state required is 2+2(four).Then draw the basic diagram to accept

minimum string as shown below.

Initial state /starting state here is q0 and final state is q2

Third step -:complete the figure by completing other transition over input

symbol.

For example q0 has one remaining transition over input symbol ‘1’

q1 has one remaining transition over input symbol ‘0’

q2 has two remaining transition over input symbol ‘0’ and ‘1’

we cannot draw the transition for q0 and q1 because the language has

starting point restriction so the initial state will not able to accept any other

symbol other than ‘0’ .

step4-: q0 has one remaining transition over input symbol ‘1’ which violets

the language rule that is if it accepts input symbol ‘1’ the pattern ‘01’ no

longer valid .

q1 has one remaining transition over input symbol ‘0’wich violets the

language rule. As discuss above

 so we have to introduce new state called trap state. And the final figure is -:

Draw the transition table related to transition function δ for above fig.

 States ↓ / input→ 0 1

q0 q1

q3

q1

q3 q2

*q2 q2 q2

q3 q3 q3

Try to solve the following question .(The solution will be provided later)

1. Construct a DFA that accept all string end with ‘01’ over input alphabet

{0,1}.

2. Construct a DFA that accept all string which has a substring ‘101’

3. Construct a DFA that accept all string which has a substring ‘001’

4. Construct a DFA that accept all string end with ‘ab’ over input alphabet

{a,b}.

5. Construct a minimum DFA that accept all ‘a’s and ‘b’s where each start

with ‘a’

6. Construct a minimum DFA that accept all ‘a’s and ‘b’s where each start

with ‘b’ and end with ‘a’

7. Construct a minimum DFA that accept all ‘a’s and ‘b’s where length of

string is exactly Three(3).

8. Construct a minimum DFA that accept all ‘a’s and ‘b’s where length of

string is at least Three(3).

9. Construct a minimum DFA that accept all ‘a’s and ‘b’s where length of

string is divisible by 2.

10. Construct a minimum DFA that accept all ‘a’s and ‘b’s where length of

string is divisible by 5

11. Construct a minmum DFA the accept all ‘a’s and ‘b’s where length of

the string is congruent to 2 mod 3.

12. Construct a minimum DFA that accept all binary number which are

divisible by 2

13. Construct a minimum DFA that accept all binary number which are

divisible by 5

14. Construct a minimum DFA that accept all string of ‘a’s and ‘b’s where

1st and last symbol are same

15. Construct a minimum DFA that accept all string of ‘a’s and ‘b’s where

1st and last symbol are different.

16. Construct a minimum DFA that accept all string of ‘a’s and ‘b’s where

Second symbol from right hand side is ‘a’.

Nondeterministic finite Automata (NFA)

It is know as nondeterministic because several choice exist for a particular

state for transit to different state after consuming single input symbol.

In simple one input symbol , more than one transition can reach to more

than one state.

It is not compulsory that all the state have to consume all symbol in ∑.

Formal definition of NFA-:-: NFA-:Formally defined using 5 tuple notation.

Simplified notation.

Machine M= (Q,∑, δ,q0,F)

Where

Q is the finite set of states.

∑ is the set of input symbol / alphabet.

δis the mapping function which maps Q × ∑ 2Q

q0is the initial state which must be element of ∑

F Set of final states must be subset of Q(More than one final state is possible)

Example-:

From the above figure it is clear that accepting single symbol ‘a’ state s1 can

move to two different state that is s1 and s2.

State s2. can accept two symbol and there is no transition for state s3.

Design of NFA-:

Basic design strategy of NFA is as follows.

1Identify the language for the given problem.

2Determine the alphabet and no of state required .

 3Draw the transition diagram which have initial, accepting state for the

minimum string.

Draw the transition table for NFA.

Example-:Design an NFA that accept a set of all string ending in 01 over the

alphabet set {0,1}

Setp1--: L(M)={01,101,001,1101,1001,0101,0011,........}

 Setp2∑={0,1} and minimum string is 01 so at least we need 3 state

(length of minimum string is 2 and in NFA we need n+1 states where n is the

length of minimum string.

So we need 3 state.

Setp3Draw the diagram.

Note-:When we construct NFA , only valid combination are considered over ∑.

Example 2-: construct a minimum NFA that accepts all string of ‘a’ s and ‘b’ s

where each string contains ‘abb’ as substring.

Sol-: It is clear that minimum string that will be accepted by machine is abb

So first of all we construct machine to accept ‘abb’ and then we will complete

the diagram by all other transition.

Then complete the fig but remember that in NFA for a given input we can

go to any no of states .Max state is 2Q .. The rule for the language should not

be violated.

The transition Table for the above NFA is as follows.

 States ↓ / input→ a b

S1 S1,S2

 S1

S2 S2 S3

S3 ----- S4

*S4 S4 S4

Equivalence Between NFA and DFA.
We know that every DFA is a NFA but vice versa is not true.

Which means it is possible to draw the DFA which is equivalent to NFA.

The process is called subset construction.

Example1-: Construct a deterministic automaton equivalent to NFA

M=({q0,q1} , {0,1} , δ , q0 , {q0})

δ transition function is given as follows.

State ↓ / ∑→ 0 1

*q0 q0 q1

 q1 q1 q0,q1

Sol-:

i. Initial state remains same for DFA and NFA so q0 is the initial

state.

ii. In DFA we cannot transit to two different state accepting input

symbol so we have to consider all possible state that is subset

of {q0,q1}

That is -: ϕ,[q0],[q1],[q0q1].

Note-: [q0q1] is a single state in case of DFA.

iii. In case of NFA q0 is the final state hence in DFA all the state

which has q0 will be the final state . so [q0] and [q0q1] are the

two final state for equivalent DFA .

iv. δ transition function for old state remains the same but for new

state it is calculate as follows

δ([q0,q1],0)=δ(q0,0)Ս δ(q1,0)= q0q1

δ([q0,q1],1)=δ(q0,1)Ս δ(q1,1)= q1 Ս q0q1= q0q1

Now construct the transition table and diagram.

State ↓ / ∑→ 0 1

*q0 q0 q1

 q1 q1 q0,q1

q0,q1 q0,q1 q0,q1

NFA with ε Transition.
In some situation , it would be useful to enhance the NFA by allowing transition

that are not triggered by any input symbol , such transition are called ε-

Transition.

Formal Definition-:NFA with ε move is denoted using 5 tuple

Machine M= (Q,∑, δ,q0,F)

Where

Q is the set of states.

∑ is the set of input symbol / alphabet.

δis the mapping function which maps Q × (∑ Ս{ε}) 2Q

q0is the initial state

F Set of final states must be subset of 2Q(More than one final state is

possible)

Example-: ε are replaced with λ in the figure.

